
NIST Special Publication 800-107
DRAFT

Recommendation for Using Approved
Hash Algorithms

Quynh Dang

Computer Security Division
Information Technology Laboratory

C O M P U T E R S E C U R I T Y

July 2007

U.S. Department of Commerce
Carlos M. Gutierrez, Secretary

Technology Administration
Robert Cresanti, Under Secretary of Commerce for Technology

National Institute of Standards and Technology
William Jeffrey, Director

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

ii

 Abstract

Cryptographic hash functions that compute a fixed- length message digest from arbitrary
length messages are widely used for many purposes in information security. This
document provides security recommendations for using the hash functions Approved in
Federal Information Processing Standard (FIPS) 180-3 for different applications.

KEY WORDS: digital signatures, hash algorithms, hash functions, hash-based key
derivation algorithms, hash value, HMAC, message digest, randomized hashing, random
number generation, SHA, truncated hash values.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

iii

Acknowledgements

The author, Quynh Dang of the National Institute of Standards and Technology (NIST)
gratefully appreciates an enormous reviewing work by Elaine Barker. The author also
acknowledges great inputs from John Kelsey, W. Timothy Polk, William E. Burr, Shu-
jen Chang and Donna F. Dodson in development of this Recommendation.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

iv

Table of Contents

1 Introduction ..1

2 Authority...1

3 Glossary of Terms, Acronyms and Mathematical Symbols2

3.1 Terms and Definitions.. 2

3.2 Acronyms... 4

3.3 Symbols.. 4

4 Approved Hash Algorithms ...4

4.1 Strengths of the Approved Hash Algorithms... 5

5 Hash Function Usage..8

5.1 Truncated Hash Value.. 8

5.2 Digital Signatures... 8

5.2.1 Full-length Hash Values ... 9

5.2.2 Truncated Hash Values ... 9

5.2.3 Randomized Hashing for Digital Signatures 10

5.3 Keyed-Hash Message Authentication Codes (HMAC) 10

5.3.1 Description.. 10

5.3.2 The HMAC Key.. 11

5.3.3 Truncation ... 11

5.3.4 Security Limitation of HMACs .. 11

5.4 Hash-based Key Derivation Functions (HKDFs) 12

5.5 Random Number Generation ... 13

6 References ..13

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

1

Recommendation for Using Approved Hash Algorithms

1 Introduction

A hash algorithm is used to condense messages of arbitrary length to a smaller, fixed-
length message digest. Federal Information Processing Standard (FIPS) 180-3, the Secure
Hash Standard (SHS) [FIPS 180-3], specifies five Approved hash algorithms: SHA-1,
SHA-224, SHA-256, SHA-384, and SHA-512. Secure hash algorithms are typically used
with other cryptographic algorithms.

This Recommendation provides guidance on using the Approved hash algorithms in
digital signatures [FIPS 186-3], HMACs [FIPS 198-1], key derivation functions (KDFs)
and random number generators.

2 Authority

This Recommendation has been developed by the National Institute of Standards and
Technology (NIST) in furtherance of its statutory responsibilities under the Federal
Information Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum
requirements, for providing adequate information security for all agency operations and
assets, but such standards and guidelines shall not apply to national security systems.
This recommendation is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information
Systems, as analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental
information is provided in A-130, Appendix III.

This Recommendation has been prepared for use by Federal agencies. It may be used by
non-governmental organizations on a voluntary basis and is not subject to copyright
(attribution would be appreciated by NIST.)

Nothing in this Recommendation should be taken to contradict standards and guidelines
made mandatory and binding on Federal agencies by the Secretary of Commerce under
statutory authority. Nor should this Recommendation be interpreted as altering or
superseding the existing authorities of the Secretary of Commerce, Director of the OMB,
or any other federal official.

Conformance testing for implementations of this Recommendation will be conducted
within the framework of the Cryptographic Module Validation Program (CMVP), a joint
effort of NIST and the Communications Security Establishment of the Government of
Canada.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

2

3 Glossary of Terms, Acronyms and Mathematical Symbols

3.1 Terms and Definitions
Algorithm A clearly specified mathematical process for computation; a set

of rules that, if followed, will give a prescribed result.
Approved FIPS-Approved and/or NIST-recommended. An algorithm or

technique that is either 1) specified in a FIPS or NIST
Recommendation, or 2) adopted in a FIPS or NIST
Recommendation or 3) specified in a list of NIST Approved
security functions.

Approved hash
algorithms

Hash algorithms specified in [FIPS 180-3].

Bit string An ordered sequence of 0 and 1 bits. The leftmost bit is the
most significant bit of the string. The rightmost bit is the least
significant bit of the string.

Bits of security See security strength.

Block cipher A symmetric key cryptographic algorithm that transforms a
block of information at a time using a cryptographic key. For a
block cipher algorithm, the length of the input block is the same
as the length of the output block.

Collision Two different known messages that have the same message
digest.

Digital signature The result of applying some cryptographic functions to data
that, when the functions are properly implemented, provides
origin authentication, data integrity and signatory non-
repudiation.

Entropy A measure of the disorder, randomness or variability in a closed
system. The entropy of X is a mathematical measure of the
amount of information provided by an observation of X.

Hash algorithm See hash function.

Hash function A function that maps a bit string of arbitrary length to a fixed
length bit string. Approved hash functions are specified in [FIPS
180-3].

Hash output See “message digest”.

Hash value See “message digest”.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

3

Key A parameter used in conjunction with a cryptographic algorithm
that determines its operation in such a way that an entity with
knowledge of the key can reproduce the operation, while an
entity without knowledge of the key cannot. Examples
applicable to this Recommendation include:

1. The computation of a keyed-hash message authentication
code, and

2. The verification of a keyed-hash message authentication
code.

3. The generation of a digital signature of a message.

4. The verification of a digital signature.

Keying material The data (e.g., keys and IVs) necessary to establish and
maintain cryptographic keying relationships.

Message
authentication code

A bit string of fixed length, computed by a MAC generation
algorithm, that is used to establish the authenticity and, hence,
the integrity of a message.

Message digest The result of applying a hash function to a message. Also
known as a “hash value” or “hash output”.

Random bit generator A device or algorithm that can produce a sequence of random
bits that appears to be statistically independent and unbiased.

Randomized hashing A process by which the input to a hash function is randomized
before being processed by the hash function.

Random number A value in a set that has an equal probability of being selected
from the total population of possibilities and, hence, is
unpredictable. A random number is an instance of an unbiased
random variable, that is, the output produced by a uniformly
distributed random process.

Security strength A number associated with the amount of work (that is, the
number of operations or work factor (see work factor)) that is
required to break a property of a cryptographic algorithm or
system; a security strength is specified in bits.

Shall Used to indicate a requirement of this Recommendation.

Shared secret A secret value that has been computed using a key agreement
scheme and is used as input to a key derivation function.

Work factor A number of executions of an algorithm by an adversary that is
required to break some property of the algorithm. For example,
for SHA-256, a work factor of 2128 executions of the algorithm
is required by an adversary to find a collision.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

4

3.2 Acronyms
FIPS Federal Information Processing Standard

SHA Secure Hash algorithm

KDF Key Derivation Function

HKDF Hash-based Key Derivation Function

MAC Message Authentication Code

HMAC Keyed-hash Message Authentication Code

3.3 Symbols
K HMAC key.

L The length of the hash value in bytes.
L/2 L is divided by 2.

λ The length in bits of a truncated MAC or truncated hash value.
T The length in bytes of a truncated MAC.

4 Approved Hash Algorithms

Currently, there are five Approved hash algorithms, SHA-1, SHA-224, SHA-256, SHA-
384 and SHA-512, which are specified in [FIPS 180-3]. These hash algorithms produce
outputs of 160, 224, 256, 384 and 512 bits, respectively. The output of a hash algorithm
is commonly known as a message digest, a hash value or a hash output.

A hash function1 is used to produce a message digest that has one or more of the
following three properties:

1. Collision resistance: It is computationally infeasible to find two different inputs to
the hash function that have the same hash value. That is, if hash is a hash
function, it is computationally infeasible to find two different inputs x and x’ for
which hash(x) = hash (x’). Collision resistance is measured by the number of
hashing operations (i.e., the amount of work; the work factor) that would be
needed to find a collision for a hash function. The amount of collision resistance
provided by a hash-function cannot exceed half the length of the hash value
produced by a given hash function. For example, SHA-256 produces a (full-
length) hash value of 256 bits; SHA-256 cannot provide more than 128 bits of
collision resistance.

1 Hash function and hash algorithm are used interchangeably, depending on the context of the discussions
throughout this Recommendation.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

5

 Note: the strength of some property of a cryptographic algorithm is determined
from the work factor required to break the property; if the work factor is 2x, then
the strength is defined to be x bits.

2. Preimage resistance2: Given a randomly chosen hash value, hash_value, it is
computationally infeasible to find an x so that hash(x) = hash_value. This
property is also called the one-wayness property. Preimage resistance is measured
by the amount of work that would be needed to find a preimage for a hash
function. The amount of preimage resistance provided by a hash-function cannot
exceed the length of the hash value produced by a given hash function. For
example, SHA-256 cannot provide more than 256-bits of preimage resistance; this
means that a work factor of 2256 operations will likely find a preimage of a (full-
length) SHA-256 hash value.

3. Second preimage resistance: It is computationally infeasible to find a second
input that has the same hash value as any other specified input. That is, given an
input x, it is computationally infeasible to find a second input x’ that is different
from x, such that hash(x) = hash (x’). Second preimage resistance is measured by
the amount of work that would be needed to find a second preimage for a hash
function. The amount of second preimage resistance provided by a hash-function
cannot exceed the length of the hash value produced by a given hash function. For
example, SHA-256 cannot provide more than 256-bits of second preimage
resistance.

The security strength of a hash function for digital signatures is defined as its collision
resistance strength. Not all applications of hash functions require collision resistance, but
may require preimage and/or second preimage resistance. A hash function that is not
suitable for a digital signature application might be suitable for other cryptographic
applications that do not require collision resistance. The security strengths of Approved
hash functions for different applications can be found in [SP 800-57].

An image (i.e., a hash value) always has a corresponding preimage; a preimage is the
input to the hash function that produces the given hash value. An image might or might
not have a second preimage which is a different input to the hash function that produces
the same hash value. If a second preimage exists, then there is no way to determine which
preimage (the real preimage or the second preimage) actually produced the given hash
value; either of the preimages could be the authentic one. If a hash function is preimage
resistant, then it is also second preimage resistant.

4.1 Strengths of the Approved Hash Algorithms

If strength (security strength) of some property of a cryptographic algorithm is n bits, a
work factor of 2n is required to break the property of the cryptographic algorithm with
100% probability of success. And, a work factor of 2m (1 <= m < n) will break the

2 There are slightly different definitions of preimage resistance of hash functions in the literature.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

6

property with a success probability of 2 (m-n). For instance, collision resistance of the
cryptographic algorithm SHA-224 (see Table 1 below in this section) has the strength of
112 bits (n = 112); a work factor of 2112 is required to break the property of the algorithm
with 100% probability of success. And, a work factor of 2100 (m = 100) will break the
collision resistance property of the algorithm with 2 (100 – 128) (2 (-28)) probability of
success.

As mentioned above, the collision resistance strength of any Approved hash function
cannot exceed half the length of its hash value. Currently, SHA-224, SHA-256, SHA-384
and SHA-512 are believed to have collision resistance strengths of 112, 128, 192 and 256
bits (half of the lengths of their hash values), respectively. However, due to the latest
cryptanalytic results for SHA-1, SHA-1 may have a collision resistance strength that is
considerably less then half of its hash value.

The preimage resistance strengths of SHA-1, SHA-224, SHA-256, SHA-384, and SHA-
512 are 160, 224, 256, 384 and 512 bits (the lengths of the hash values) (see Table 1),
respectively. At the time that this Recommendation was written, there are no known short
cuts to find the preimages of the hash values generated from the Approved hash
algorithms.

Second preimage resistance strengths of the Approved hash functions depend not only on
the functions themselves, but on the sizes of the messages that the hash functions process
as well. The second preimage resistance strength of any of the Approved hash algorithms
is (L – K), where L is the output block size of the hash algorithm, for instance L = 256 in
SHA-256, (i.e., the length of the hash value), and K is a function of the input block size,
for instance input block size = 512 for SHA-256 (See more in [FIPS 180-3]) and the
length of the message used (the preimage) as follow:

bitsinsizeblockinput

bitsinlengthmessageK

2 =

Note that the second preimage resistance strengths of the Approved hash functions are
not fixed values; they depend on the environments where the hash functions are used.

Table 1 provides a summary of the strengths of the Approved hash algorithms:

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

7

Table 1: Summary of the Strengths of the Approved Hash Algorithms

 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Collision
Resistance
Strength in

bits

< 80 112 128 192 256

Preimage
Resistance
Strength in

bits

160 224 256 384 512

Second
Preimage
Resistance
Strength in

bits

160 - K 224 - K 256 - K 384 - K 512 - K

Also, note that the preimage resistance of any Approved hash algorithm is stronger than
its collision resistance strength. Therefore, if an Approved hash algorithm satisfies a
collision resistance requirement for a cryptographic application, then it also satisfies any
preimage resistance requirement that the application might have.

Similarly, if K is not greater than L/2 (half of the output block size in bits) or (L – K) ≥
L/2, then the second preimage resistance strength of the Approved hash algorithm (or
function) is equal to or greater than its collision resistance strength. In this case, if the
Approved hash function satisfies a collision resistance requirement for a cryptographic
application, then it also satisfies any second preimage resistance requirement that the
application might have. A value of K that is less than or equal to L/2 is very common, in
practice. For example, if an Approved hash function in a digital signature application
satisfies the collision resistance requirement, and the messages hashed by the application
is not longer than 2 (L/2) input blocks of the hash function in length, then it also satisfies
the second preimage resistance requirement.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

8

5 Hash Function Usage

5.1 Truncated Hash Value
Some applications may require a message digest that is shorter than the (full-length)
message digest provided by an Approved hash function specified in [FIPS 180-3]. In such
cases, it may be appropriate to use a subset of the bits produced by the hash function as
the (shortened) message digest.

This guidance is provided for unforeseen applications in order to provide interoperability.
A standard method for truncating hash function outputs (i.e., message digests) is provided
strictly as a convenience for implementers and application developers. The proper use of
a truncated hash value is an application-level issue.

For convenience, let the shortened message digest be called a truncated hash value, and
let λ be the desired length in bits of the truncated hash value. Let hlen be the length in bits
of the (full-length) message digest for a given hash function. A truncated hash value may
be used if the following requirements are met:

1. λ shall be at least twice the required collision resistance strength s (in bits) for the
truncated hash value (i.e., λ ≥ 2s).

2. The length of the output block of the Approved hash function to be used shall be
greater than λ (i.e., hlen > λ).

3. The λ left-most bits of the full-length message digest shall be selected as the
truncated hash value.

For example, if a truncated hash value of 96 bits is desired, the SHA-256 hash function
could be used (e.g., because it is available to the application, and provides an output
larger than 96 bits). The leftmost 96 bits of the 256-bit message digest generated by the
SHA-256 hash function are selected as the truncated hash value, and the rightmost 160
bits of the message digest are discarded. Truncating the message digest can impact the
security of an application. The amount of collision resistance does not exceed half the
length of the truncated hash value. Even though SHA-256 provides 128 bits of collision
resistance, the collision resistance provided by the 96-bit truncated hash value is limited
to half the length of the truncated hash value, which is 48 bits, in this case.

Truncating the message digest can have other impacts, as well. For example, applications
that use a truncated hash value risk attacks based on confusion between different parties
about the specific amount of truncation used, and the specific hash function that was used
to produce the truncated hash value. Any application using a truncated hash value is
responsible for ensuring that the truncation amount and the hash function used are known
to all parties, with no chance of ambiguity. It is also important to note that there is no
guarantee that truncation will not make any Approved hash functions weaker.

5.2 Digital Signatures
A hash function is used to condense a message to a fixed-length message digest. For
digital signature generation, this message digest is then signed by a digital signature
algorithm. A digital signatures is used to verify the data that was signed and who signed
it.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

9

When two different messages have the same hash value or message digest (i.e., a
collision is found), then a digital signature of one message may be used as a digital
signature for the other message. If this happens then a verified digital signature does not
guarantee the authenticity of the signed data because either one of the two messages
could be valid. Therefore, hash functions used in digital signature applications shall be
collision resistant.

The collision resistance strengths of the hash functions are used as their security strengths
for digital signature applications. The collision resistance strengths of the Approved hash
algorithms can be found in Table 1 of Section 4.1 of this Recommendation. The security
strength of any digital signature algorithm specified in [FIPS 186-3] is the minimum of
the collision resistance strength of the hash algorithm and the security strength provided
by the digital signature algorithm and key size; more information can be found in [SP
800-57, Part 1]). For instance, if a digital signature that is generated using SHA-1 and one
of the Approved digital signature algorithms and key sizes specified in [FIPS 186-3], then
the security strength of this digital signature is equivalent to the collision resistance
strength of SHA-1, which is less then 80 bits (see Table 1 in Section 4.1). Note that the
security strength of any Approved digital signature algorithm and key size is at least 80
bits. Therefore, SHA-1 should not be used in any digital signature applications that
require at least 80 bits of security. More information on the security strengths of digital
signature applications using the Approved hash algorithms can be found in [SP 800-57].

There are several ways to use hash functions with digital signature algorithms as
described below.

5.2.1 Full-length Hash Values
The hash functions specified in [FIPS 180-3] (i.e., SHA-1, SHA-224, SHA-256, SHA-
384 and SHA-512) generate (full-length) hash values of 160, 224, 256, 384 and 512 bits,
respectively. Full-length hash values as specified in [FIPS 180-3] can be used with
Approved digital signature algorithms as specified in [FIPS 186-3]. The amount of
collision resistance provided by a hash-function does not exceed half the length of the
full-length hash value.

5.2.2 Truncated Hash Values
Truncated hash values may be used in generating digital signatures. However, the
security of the hash functions now depends on the lengths of the truncated hash values, as
well as the hash function that is used. As stated in Section 5.1, the amount of collision
resistance does not exceed half the length of the truncated hash value.

The length of truncated hash values used shall be at least twice the desired amount of
collision resistance (i.e., the security strength) required for the digital signature
algorithms. For example, if security strength of 112 bits is required, a truncated hash
value of at least 224 bits must be produced. SHA-224, SHA-256, SHA-384 and SHA-512
could be used to generate a 224-bit hash value, although, in the case of SHA-224, the
hash-value would not be truncated.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

10

5.2.3 Randomized Hashing for Digital Signatures
As described in Section 5.2, the security strengths of Approved hash algorithms in digital
signature applications [FIPS 186-3] are their collision resistance strengths. However,
using the randomized hashing technique as specified in [SP 800-106], the security
strengths of the Approved hash algorithms in the digital signature applications will be
their second preimage resistance strengths, not their collision resistance strengths. The
second preimage resistance strengths of the Approved hash algorithms are normally
stronger than their collision resistance strengths (see the discussion in Section 4.1).

As stated in Section 4.1, SHA-1 may have a collision resistance strength less than 80 bits.
Therefore, SHA-1 may not be suitable for 80 bits of security digital signature
applications. However, SHA-1 has a second preimage resistance strength more than 80
bits when K < L/2 (see the discussion in Section 4.1), so SHA-1 will be suitable for
applications requiring 80 bits of security when the randomized hashing technique
specified in SP 800-106 is used.

5.3 Keyed-Hash Message Authentication Codes (HMAC)

5.3.1 Description
Message authentication codes (MACs) provide data authentication and integrity
protection. Two types of algorithms for computing a MAC have been Approved: 1) MAC
algorithms that are based on Approved block cipher algorithms (more information can be
found in [SP 800-38B] and 2) MAC algorithms that are based on hash functions, called
HMAC algorithms that are specified in [FIPS 198-1]. This section discusses the use of
HMAC.

HMAC requires the use of a secret key that is shared between the entity that generates the
MAC (e.g., a message sender), and the entity (or entities) that need to verify the MAC
(e.g., a message receiver).

The MAC is formed by condensing the secret key and the data to be MACed (e.g., a
message to be sent) using a MAC algorithm (e.g., HMAC). The MAC is typically
provided to the MAC verifier along with the data that was MACed (e.g., the sender
transmits both the MAC and the data that was MACed to the intended receiver).

The verifier computes the MAC on the data using the same key and MAC algorithm that
was used by the MAC generator and compares the result computed with the received
MAC. If the two values match, the message has been correctly received and the verifier is
assured that the entity that generated the MAC is a member of the community of users
that share the key.

If an adversary, who is not a member of the community of users that share the key, finds
preimages of hash values in operations while computing a certain HMAC value, then
he/she will know the shared key, because one of the preimages contains it. If this
happens, then a HMAC value will fail to provide user authentication for future HMAC
values if the same shared key is used, because the HMAC values could be generated by

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

11

the adversary, who knows the shared key, but does not in the community of users.
Therefore, HMAC applications shall use hash functions that provide sufficient preimage
resistance for the desired security strength of the HMAC. And, the security strengths of
hash functions in HMAC applications are their preimage resistance strengths (see Table 1
of Section 4.1).

5.3.2 The HMAC Key
The security strength of HMAC depends on the preimage resistance strength of the hash
function as described above and the security strength of the secret key. The key, K, shall
contain at least L/2 bytes (i.e., 8 * L/2 bits) of entropy, so that at least (8* L/2) bits of
security are provided, where L is the length (in bytes) of the hash function output. Note
that secret keys that contain greater than L bytes (8*L bits) of entropy do not significantly
increase the security strength, due to the fact that the preimage resistance strength of the
hash function is limited to the length in bits of the hash value.

HMAC keys shall be chosen at random using an Approved key generation or key
establishment method and shall be changed periodically. The keys shall be protected in a
manner that is consistent with the value of the data that is to be protected (i.e., the text
that is authenticated using HMAC). Approved key generation methods include the
generation of random bits using an Approved random bit generator as specified in [SP
800-90], Recommendation for Random Number Generation Using Deterministic Random
Bit Generators, and the use of an Approved key establishment method (e.g., a method
specified in [SP 800-56A], Recommendation for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography).

5.3.3 Truncation
Applications may truncate the output of HMAC to produce a truncated value of T bytes
(i.e., or λ bits, where λ = 8*T).

When a truncated hash value is used, and the length of the MAC needed is T bytes, then
the T left-most bytes (i.e., the λ left-most bits) of the HMAC output shall be used as the
MAC. The output length, T, shall be no less than four bytes (i.e., 4 ≤ T ≤ L). However, T
shall be at least L/2 bytes (i.e., L/2 ≤ T ≤ L) unless an application or protocol makes
numerous trials impractical. For example, a low bandwidth channel might prevent
numerous trials on a 4 byte MAC, or a protocol might allow only a small number of
invalid MAC attempts. See Section 5.3.4 for further discussion.

5.3.4 Security Limitation of HMACs
The successful verification of a MAC does not completely guarantee that the
accompanying data is authentic; there is a chance that an adversary with no knowledge of
the key can present a purported MAC on the plaintext data that will pass the verification
procedure. For example, an arbitrary purported MAC of λ bits on an arbitrary plaintext
message may be successfully verified with an expected probability of (1/2)λ. This
limitation is inherent in any MAC algorithm.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

12

The limitation is magnified if an application permits a given non-authentic message to be
repeatedly presented for verification with different purported MACs. Each individual trial
succeeds only with a small probability, (1/2)λ; however, for repeated trials, the probability
increases that, eventually, one of the MACs will be successfully verified. Similarly, if an
application permits a given purported MAC to be presented with different non-authentic
messages, then the probability increases that, eventually, the MAC will be successfully
verified for one of the messages.

Therefore, in general, if the MAC is truncated, then its length, λ, should be chosen as
large as is practical, with at least half as many bits as the output block length, 8*L (in
bits). The minimum value for λ may be relaxed to 32 bits for applications in which the
two types of repeated trials that are described above are sufficiently restricted. For
example, the application, or the protocol that controls the application, may monitor all of
the plaintext messages and MACs that are presented for verification, and permanently
reject any plaintext message or any MAC that is included in too many unsuccessful trials.

Another example occurs when the bandwidth of the communications channel is low
enough to preclude too many trials of either type. In both cases, the maximum number of
allowed unsuccessful trials must be pre-determined, based on the risks associated with
the sensitivity of the data, the length of λ and the MAC algorithm used; in the case of
HMAC, this includes the hash function that is used.

5.4 Hash-based Key Derivation Functions (HKDFs)
Hash functions can be used as building blocks in key derivation functions (KDFs) (e.g.,
as specified in [SP 800-56A] for key establishment). KDFs using hash functions as their
building blocks are called Hash-based Key Derivation Functions (HKDFs). Main purpose
of a HKDF is to generate secret keys from a secret value that is shared between
communicating parties. A compromise of one of the generated secret keys shall not lead
to compromise of the shared secret value. If a hash function in the HKDF is not preimage
resistant, then an adversary that knows one of the generated secret keys may be able to
determine the shared secret value by finding the preimage(s) of the hash value(s)
generated by the hash function. Therefore, to be able to have a secure HKDF, the hash
function shall be preimage resistant.

Each of the two Approved HKDFs in [SP 800-56A] uses a shared secret that is shared
between two communicating parties, an Approved hash function and other input
attributes to generate secret keying material, such as HMAC keys. The security of an
HKDF specified in [SP800-56A] depends on the preimage resistance strength of the hash
function and the security strength of the shared secret generated from the key agreement
scheme. The security of the keying material generation process is the minimum of the
preimage resistance strength of the hash function (see Table 1 of Section 4.1), and the
security strength of the shared secret. For instance, if an HKDF built with SHA-224 uses
a shared secret with 80 bits of entropy (i.e., the shared secret provides 80 bits of security),

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

13

this HKDF has a security strength of 80 bits, even though SHA-224 provides a preimage
resistance strength of 224 bits.

HKDFs are used to generate secret keying material for cryptographic functions, such as
HMAC. Therefore, the security strength of the generated keying material is vital to the
security of the cryptographic functions that use it. The security strength of an HKDF
shall be equal to or greater than the desired security strength of any application that uses
the generated keying material. For instance, if 128 bits of security strength are desired for
an application, then the keying material shall be generated from a shared secret and an
HKDF that provides at least 128 bits of security, i.e., the shared secret key shall have at
least 128 bits of entropy, and the preimage resistance strength of the hash function shall
be at least 128 bits. The hash function shall be one of the Approved hash functions in this
case.

5.5 Random Number Generation
When a random number is needed by an application, random bits are generated by a
random bit generator and then converted to a random number. However, some
applications may require random bits rather than random numbers; in this case, the
random bits need not be converted. Random bit generators may be constructed using hash
functions. Approved random bit generators and the requirements for their use are
specified in [SP 800-90].

6 References

[SP 800-38B] NIST Special Publication (SP) 800-38B, Recommendation for Block
Cipher Modes of Operation: The CMAC Mode for Authentication, May
2005.

[SP 800-56A] NIST Special Publication (SP) 800-56A, Recommendation for Pair-Wise
Key Establishment Schemes Using Discrete Logarithm Cryptography,
March 2006.

[SP 800-57] NIST Special Publication (SP) 800-57, Part 1, Recommendation for Key
Management: General, August 2005.

[SP 800-90] NIST Special Publication (SP) 800-90, Recommendation for Random
Number Generation Using Deterministic Random Bit Generators, June 06.

[SP 800-106] NIST Special Publication (SP) 800-106, Randomized Hashing for Digital
Signatures, Draft July 2007.

 [FIPS 180-3] Federal Information Processing Standard 180-3, Secure Hash Standard
(SHS), Draft June 2007.

[FIPS 186-3] Federal Information Processing Standard 186-3, Digital Signature Standard
(DSS), Draft March 2006.

 NIST SP 800-107 Recommendation for Using Approved Hash Algorithms July 2007

DRAFT

14

[FIPS 198-1] Federal Information Processing Standard 198-1, The Keyed-Hash Message
Authentication Code (HMAC), Draft June 2007.

